The generator matrix
1 0 1 1 1 0 1 1 X 1 1 X+2 X X 0 2 1 X+2 1 X 1 1 X 1 1
0 1 1 0 X+1 1 X X+3 1 X+2 3 1 2 X 1 1 0 1 X+1 1 X+3 3 1 2 0
0 0 X X+2 0 X+2 X X+2 X 2 0 0 X X 0 X 0 0 0 X X 2 X X 0
0 0 0 2 0 0 0 0 0 0 2 2 0 2 0 0 0 2 0 2 2 0 2 0 0
0 0 0 0 2 0 0 0 0 0 2 0 2 2 0 2 2 2 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 2 2 0 2 0 2 2 2 0 0 2 2 2 0 0 0
0 0 0 0 0 0 2 0 0 0 2 2 2 0 0 2 0 0 2 0 2 2 0 0 0
0 0 0 0 0 0 0 2 0 2 0 2 2 0 0 2 0 2 0 0 2 0 2 0 0
0 0 0 0 0 0 0 0 2 2 2 0 0 2 2 2 0 0 2 0 0 2 0 0 0
generates a code of length 25 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 16.
Homogenous weight enumerator: w(x)=1x^0+28x^16+56x^17+100x^18+158x^19+392x^20+728x^21+1256x^22+1856x^23+2312x^24+2568x^25+2332x^26+1900x^27+1260x^28+712x^29+388x^30+176x^31+91x^32+32x^33+16x^34+6x^35+12x^36+4x^38
The gray image is a code over GF(2) with n=100, k=14 and d=32.
This code was found by Heurico 1.16 in 2.55 seconds.